Synthetic Challenges in the Assembly of Macrocyclic HCV NS3/NS4A Protease Inhibitors: The Case of BILN 2061 and Its Analogs
نویسنده
چکیده
The virally encoded serine protease NS3/NS4A is essential for the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The quest for the discovery of antiviral agents targeting the NS3/NS4A was initiated with a substratebased hexapeptide as the lead structure. Evaluation of the conformational pre-organization of this ligand to the bioactive conformation led to the design of macrocyclic peptides, typified by the antiviral agents BILN 2061. Today, closely related analogs of BILN 2061 represent an important class of human therapeutics for the treatment of HCV infection. The critical steps in the synthesis of these compounds involves the cyclization of a tripeptide diene, containing a (1R,2S)vinyl aminocyclopropylcarboxylate residue, via ring-closing metathesis (RCM). Conformational factors, ligand effects, and reaction conditions were evaluated, and a protocol was developed for the efficient production of these peptidomimetics in high yield and diastereomeric purity. The assembly of these challenging molecules and the key optimization studies are described.
منابع مشابه
The design of a potent inhibitor of the hepatitis C virus NS3 protease: BILN 2061--from the NMR tube to the clinic.
The virally encoded serine protease NS3/NS4A is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. Until very recently, the design of inhibitors for the HCV NS3 protease was limited to large peptidomimetic compounds with poor pharmacokinetic properties, making drug discovery an ...
متن کاملMutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro.
BILN 2061 is a novel, specific hepatitis C virus (HCV) NS3 serine protease inhibitor discovered by Boehringer Ingelheim that has shown potent activity against HCV replicons in tissue culture and is currently under clinical investigation for the treatment of HCV infection. The poor fidelity of the HCV RNA-dependent RNA polymerase will likely lead to the development of drug-resistant viruses in t...
متن کاملHepatitis C virus impairs natural killer cell activity via viral serine protease NS3
Hepatitis C virus (HCV) infection is characterized by a high frequency of chronic cases owing to the impairment of innate and adaptive immune responses. The modulation of natural killer (NK) cell functions by HCV leads to an impaired innate immune response. However, the underling mechanisms and roles of HCV proteins in this immune evasion are controversial, especially in the early phase of HCV ...
متن کاملDevelopment of an intergenotypic hepatitis C virus (HCV) cell culture method to assess antiviral susceptibilities and resistance development of HCV NS3 protease genes from HCV genotypes 1 to 6.
Protease inhibitors (PIs) of hepatitis C virus (HCV) provide an additional or alternative therapy for chronic infection. However, assessment of their efficacy and ability to inhibit replication of different genotypes is hampered by the lack of a convenient animal model or a method for in vitro culture of HCV other than the type 1/2-based replicons and the infectious genotype 2a clone JFH1. To a...
متن کاملSensitivity of NS3 serine proteases from hepatitis C virus genotypes 2 and 3 to the inhibitor BILN 2061.
Hepatitis C virus (HCV) displays a high degree of genetic variability. Six genotypes and more than 50 subtypes have been identified to date. In this report, kinetic profiles were determined for NS3 proteases of genotypes 1a, 1b, 2ac, 2b, and 3a, revealing no major differences in activity. In vitro sensitivity studies with BILN 2061 showed a decrease in affinity for proteases of genotypes 2 and ...
متن کامل